A posteriori error estimation for a new stabilized discontinuous Galerkin method

نویسندگان

  • Albert Romkes
  • Serge Prudhomme
  • J. Tinsley Oden
چکیده

A posterior% error estimates are derived for a stabilized discontinuous Galerkin method (DGM) [l]. Equivalence between the error norm and the norm of the residual functional is proved, and consequently, global error estimates are obtained by estimating the norm of the residual. One-and two-dimensional numerical experiments are shown for a reaction-diffusion type model problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Discontinuous Galerkin Method for Two-dimensional Hyperbolic Problems Part II: A Posteriori Error Estimation

In this manuscript we construct simple, efficient and asymptotically correct a posteriori error estimates for discontinuous finite element solutions of scalar firstorder hyperbolic partial differential problems on triangular meshes. We explicitly write the basis functions for the error spaces corresponding to several finite element spaces. The leading term of the discretization error on each tr...

متن کامل

A Posteriori Error Estimation for Discontinuous Galerkin Approximations of Hyperbolic Systems

This artic!e considers a posteriori error estimation of specified functionals for first-order systems of conservation laws discretized using the discontinuous Galerkin (DG) finite element method. Using duality techniques, we derive exact error representation formulas for both linear and nonlinear functionals given an associated bilinear or nonlinear variational form. _Veighted residual approxim...

متن کامل

Energy Norm shape A Posteriori Error Estimation for Mixed Discontinuous Galerkin Approximations of the Stokes Problem

In this paper, we develop the a posteriori error estimation of mixed discontinuous Galerkin finite element approximations of the Stokes problem. In particular, we derive computable upper bounds on the error, measured in terms of a natural (mesh–dependent) energy norm. This is done by rewriting the underlying method in a non-consistent form using appropriate lifting operators, and by employing a...

متن کامل

Energy Norm A Posteriori Error Estimation for Mixed Discontinuous Galerkin Approximations of the Stokes Problem

In this paper, we develop the a posteriori error estimation of mixed discontinuous Galerkin finite element approximations of the Stokes problem. In particular, we derive computable upper bounds on the error, measured in terms of a natural (mesh–dependent) energy norm. This is done by rewriting the underlying method in a non-consistent form using appropriate lifting operators, and by employing a...

متن کامل

A Posteriori Error Estimation for Discontinuos Galerkin Approximations of Hyperbolic Systems

This article considers a posteriori error estimation of specified functionals for first-order systems of conservation laws discretized using the discontinuous Galerkin (DG) finite element method. Using duality techniques, we derive exact error representation formulas for both linear and nonlinear functionals given an associated bilinear or nonlinear variational form. Weighted residual approxima...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Appl. Math. Lett.

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2003